Quantitative Family Data Analysis

George J. Knafl, PhD University of North Carolina at Chapel Hill

© copyright, G. J. Knafl

Overview

- I. overview of different types of family data and alternative family data analysis methods
- II. selected analyses of actual family data including
 - summary statistics
 - regression
 - analysis of variance
 - factor analysis
 - cluster analysis

Quantitative Family Data Analysis Part I Overview of Family Data Analysis

Family Outcomes

- outcome (dependent, response, y) variables can be the same for all family members
 - —e.g., a child's behavioral problems as assessed by both the mother and the father
- or different for different family members
 - -e.g., the mother's depressive symptoms and a child's behavioral problems

Number of Measurements per Family

- family data are often dyadic
 - e.g., mother's and father's assessments of family functioning
 - e.g., mother's assessments of behavioral problems for a chronically ill child and for a healthy sibling
- but can involve more than two family members
 - e.g., adolescents assessments of family functioning along with assessments from mothers and fathers
- or multiple family dimensions
 - e.g., mother's and father's assessments of behavioral problems for an ill child and for a healthy sibling

Number of Members per Family

- family data can involve different numbers of family members for different families
- e.g., a survey of parents of a chronically ill child can involve
 - single-mother, single-father, and two-parent families
 - only mothers participating, only fathers participating, or both mothers and fathers participating

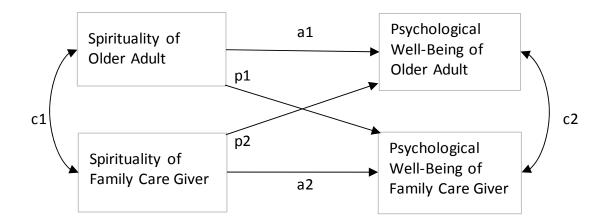
Family Data Analyses

- family data need standard kinds of analyses
 - e.g., summary statistics, regression, analysis of variance, analysis of covariance
- standard methods inappropriate for analyzing the combined data for all family members
 - they assume that outcome measurements for different subjects are independent
 - but outcome measurements for members of the same family are usually correlated

Family Data Analyses

- can be more complex than for single individuals
- predictor (independent, explanatory, x) variables can provide both actor and partner effects on outcomes
 - e.g., a mother's assessment of family functioning provides
 - an actor effect for predicting her own assessment of a child's behavioral problems and
 - a partner effect for predicting her spouse's/partner's assessment of those behavioral problems
 - the Actor Partner Interdependence Model (APIM)

APIM Example



APIM model for the relationship of psychological well-being in terms of spirituality

actor effects: a1 and a2 partner effects: p1 and p2 correlations: c1 and c2

- how psychological well-being depends on spirituality
- tested using 157 Korean older adult/family care giver dyads

Number of Time Points

- family data can be cross-sectional
 - i.e., measured at one point in time for multiple family members
 - analyses then need to account for the intra-familial correlation (IFC) between outcome measurements for members of the same family
- or longitudinal
 - i.e., measured at multiple points in time for multiple family members
 - analyses then need to account for temporal correlation as well as for IFC
- possible to avoid accounting for IFC

Restricting the Scope of the Study

- only study one family member
 - e.g., the mother rather than both the mother and father
- so a study of that particular individual's perspective and not really of the complete family perspective

Simplified Outcomes

- outcomes for families can be aggregated and the aggregated data analyzed with standard methods
 - e.g., averaging or differencing mother's and father's assessments of a child's behavioral problems

Uphold & Strickland (1989)

- can result in substantial loss of information on variability within families
 - and loss of data for 1-parent families with differencing
- can produce non-comparable data
 - e.g., averages for different numbers of family members have different variances and should not be analyzed with standard methods that assume constant variances

Separate Analyses

- standard methods can be applied to the data for each family member separately
 - e.g., separate averages of child behavioral problems as assessed by mothers and by fathers
 - family-related research as opposed to family research
 Feetham, 1991
- ignores the IFC, an important statistical property of the family as a unit
 - the family unit is more than just the aggregate of its individual family members
 - family data analyses should reflect this by addressing the combined data for all family members
- can also lose power for testing hypotheses
 - may be small numbers for some family members
- cannot test for differences between family members

Ignoring the IFC

- use standard methods to analyze the combined data for all family members
- treats the IFC as equal to 0
- usually very inappropriate, so results questionable
- can also have an affect on the conclusions
 - nonsignificant effects when IFC=0 can become significant when IFC is taken into consideration

Circumventing Consideration of IFC

- loss of information but not technically wrong
 - restricting the scope of the study to one family member
 - simplifying outcomes to a single value per family
 - as long as same number of family members in each family
 - conducting separate analyses of data for each family member
- incorrect with questionable results
 - ignoring the IFC and analyzing combined data for multiple family members using standard methods
 - only correct in those rare cases when IFC=0

Combined Analyses

- to test for differences in means for Y = child behavioral problems using combined data for mothers and fathers
- could try a standard regression model

Y=a+b·FATHER+e

- FATHER is an indicator for being a father
 - i.e., it equals 1 for fathers and 0 for mothers
- where e is a mean zero random error term
- the intercept a is the mean for mothers
- the slope b is how much the mean for fathers differs from the mean for mothers
 - so you want to test for b=0
- problem: the errors e are independent for different subjects, which usually does not hold for mothers and fathers from the same families

Adjusting the Errors

start with a standard regression model

- where e is a mean zero random error term
- the intercept a is the mean for mothers
- the slope b is how much the mean for fathers differs from the mean for mothers
- add in a mean zero random term u, one for each family and independent for different families

- the new error terms e'=e+u are correlated within families and the correlation is the IFC
- use this model to test for b=0

Fixed Versus Random Effects

for the model

- a and b are called fixed effects/coefficients
 - they are unknown constants
 - and a+b·FATHER is the fixed component of the model
- error u is called a random effect/coefficient
 - it is a random variable with mean zero and some unknown variance
 - it is called a random intercept
 - and e+u is the random component of the model
- hence this is a mixed effects model
 - i.e., containing both fixed and random effects

Multilevel (Hierarchical Linear) Model

first level is a standard regression model

- intercept a and slope b are the fixed coefficients
- but one or both are allowed to change with "subjects"
 - for family data, families are the "subjects"
- second level adjusts one or both of the model coefficients to random coefficients
- in this case, change the intercept a to a random intercept a+u (so a is the average intercept) giving

- can also adjust b to b+v
- correlation for e'=e+u called the intraclass correlation coefficient (ICC) in general but is IFC for family data

19

Linear Mixed Model

Y=a+b·FATHER+e'

- has fixed component a+b·FATHER modeling means
- and random component e' modeling variances/ correlations (or equivalently, covariances)
- random errors e' are chosen to be independent for different families but correlated for different members of the same family
- e'=e+u generated by a random intercept works for any number of family members and produces
 - same variance for all family members and
 - same correlation for all pairs of distinct family members
 - so it is called compound symmetry (CS)

Adjustments to Random Component

- compound symmetry (CS) is the model used in standard repeated measures analyses
- same variances for all family members might be too simplistic for family data
 - can be changed to heterogeneous variances (CSH)
- same correlations might be too simplistic for data based on more than two family members
 - can be changed to unstructured (UN) correlations with different IFCs for each pair of family members
- unstructured (UN) correlations with heterogeneous variances is model used in multivariate ANOVA

Adjustments to Fixed Component

- should account for differences in means for
 - different types of family members
 - e.g., fathers and mothers
 - different types of families
 - e.g., one-parent versus two-parent families
 - different numbers of participating family members
 - e.g., only mother, only father, or both participating
 - can do this with indicator variables like FATHER
- can also add predictor variable(s) X
- and interactions like FATHER·X

Structural Equation Modeling (SEM)

- has been used to model family data for some time
 Thomsom & Williams (1982); Clarke (1995)
- in a standard regression model
 - only the outcome Y is measured with error
 - predictors X are treated as measured without error
- SEM allows predictors to be measured with or without error
- very complex relationships can be more readily modeled with SEM than with linear mixed modeling
 - but otherwise either are as effective

Types of Outcomes

- linear mixed models apply to continuous family outcomes that can be treated as normally distributed
 - e.g., depressive symptoms for family care givers/ receivers
- categorical family outcomes require generalized linear modeling
 - e.g., being depressed (having a high level of depressive symptoms) vs. not for family care givers/receivers
 - can use generalized estimating equations (GEE) techniques to account for IFC

Data Structure

- family data are often stored as one record per family with separate variables containing measurements for different family members (called wide format)
- then they need to be restructured for analysis (called long format)

from FAMID YMOTHER YFATHER			FAMID	FATHER	Υ
			1	0	10
1	10	12	1	1	12
2	15	10	2	0	15
2	13	10	2	1	10
• • •			•••		

Longitudinal Data

 the multilevel model starts with a standard regression model in time T

$$Y=a+b\cdot T+e$$

 and replaces the slope b by a random slope b+v where v has mean zero (so b is the average slope) and is independent across different subjects but correlated within times for the same subject

$$Y=a+(b+v)\cdot T+e=a+b\cdot T+v\cdot T+e$$

- new error terms e'=v·T+e are correlated within times for the same subject
- a type of random coefficients model

Longitudinal Data

 alternately, the standard regression model in time T

$$Y=a+b\cdot T+e$$

 can be adjusted by also replacing the fixed intercept a by a random intercept a+u where u has mean zero (so a is the average intercept) and is independent across subjects but correlated within times for each subject

$$Y=a+u+(b+v)\cdot T+e=a+b\cdot T+u+v\cdot T+e$$

 new error terms e'=u+v·T+e are correlated within times for the same subject

Linear Mixed Model

$$Y=a+b\cdot T+e'$$

- where the error terms e' have mean zero, are independent across different subjects and correlated within times for the same subjects
- e'=v·T+e and e'=u+v·T+e are cases generated by multilevel modeling
- autoregression is a common alternative for e'
 - treats correlations as weakening the farther apart outcomes are in time
 - cannot be generated by a random coefficients model

Longitudinal Family Data

 multilevel model starts with a standard regression model in time T and FATHER

$$Y=a+b_1\cdot T+b_2\cdot FATHER+e$$

• and replaces the fixed intercept a, slope b_1 for T, and slope b_2 for FATHER by random coefficients a+u, b_1+v_1 , and b_2+v_2 (or any subset of these)

$$Y=a+u+(b_1+v_1)\cdot T+(b_2+v_2)\cdot FATHER+e$$

$$=a+b_1\cdot T+b_2\cdot FATHER+u+v_1\cdot T+v_2\cdot FATHER+e$$

 new error terms e'=u+v₁·T+v₂·FATHER+e are correlated within members of the same family and within times for those family members

Linear Mixed Model

$$Y=a+b_1\cdot T+b_2\cdot FATHER+e'$$

- error terms e' are independent across different families and correlated within members of the same family and within times for those family members
- e'=u+v₁·T+v₂·FATHER+e is the case generated by the multilevel or random coefficients model
 - a regression model in random coefficients
- two-dimensional correlation structures are alternatives for e'
 - e.g., unstructured correlations within family members along with autoregressive correlations within times

Types of Outcomes

- linear mixed models only apply to continuous longitudinal family outcomes that can be treated as normally distributed
 - e.g., depressive symptoms for family care givers/ receivers over multiple time points
- categorical longitudinal family outcomes require generalized linear mixed modeling
 - e.g., depressed (high levels of depressive symptoms) vs.
 not for family care givers/receivers over multiple time
 points
 - GEE as usually implemented cannot account for both IFC and temporal correlation

Summary for Part I

- family data
 - can involve different numbers of family members and different types of families
 - can be cross-sectional or longitudinal
- family outcomes
 - can be the same or different for different family members
 - can be continuous or categorical
 - can be analyzed with mixed models accounting for
 - differences in means and standard deviations
 - IFC and possibly also temporal correlation
 - dependence on one or more predictor variables

Quantitative Family Data Analysis Part II Selected Family Data Analyses

Child Adaptation Data

- cross-sectional study of parents of a child with a chronic condition (e.g., diabetes, Crohn's disease)
- available measures
 - Y = child adaptation in intensity of behavioral problems (Eyberg Child Behavioral Inventory)
 - larger values mean more problems and so worse child adaptation
 - FF = family functioning (McMaster Family Assessment Device)
 - larger values mean poorer levels of family functioning
- 324 two-parent families
 - with mothers participating for all families
 - with fathers also participating for 145 (44.8%) of the families

Summary Statistics - Child Adaptation

 $Y=a+b_1\cdot FATHER+b_2\cdot MOMONLY+e'$

FATHER is 1 if a father and 0 if a mother

MOMONLY is 1 if a mother without a participating father and 0 if a mother with a participating father or a father

- e' = errors with mean zero, independent across different families, correlated within families, and with different variances for mothers/fathers (CSH)
- a is mean child adaptation for mothers with participating fathers
- b₁ is change in mean for fathers compared to mothers of the same families
- b₂ is change in mean for mothers without participating fathers compared to mothers with participating fathers

Summary Statistics - Child Adaptation

Y=a+b₁·FATHER+b₂·MOMONLY+e'

- estimated mean child adaptation a for mothers with participating fathers was 87.5
- estimated change in mean b_1 for fathers compared to mothers of the same families was 2.8 and was not significant (p=0.16)
- estimated change in mean b₂ for mothers without participating fathers compared to mothers with participating fathers was
 -1.5 and was not significant (p=0.65)
- estimated standard deviations were close at 29.0 and 28.4 for mothers and fathers, respectively
- estimated IFC was 0.65 and significant (p<0.01)
- mean child adaptation did not change with type of family and type of family member but the IFC was substantial

Adaptation vs. Family Functioning

 $Y=a+b_1\cdot FATHER+b_2\cdot MOMONLY+b_3\cdot FF+e'$

- FF = family functioning
- e' = errors with mean zero, independent across different families, correlated within families, and with different variances for mothers/fathers (CSH)
- a+b₃·FF is how mean child adaptation changes with family functioning for mothers with participating fathers
- b₁ is how much this relationship is shifted up/down for fathers compared to mothers of the same families
- b₂ is how much this relationship is shifted up/down for mothers without participating fathers compared to mothers with participating fathers

Adaptation vs. Family Functioning

 $Y=a+b_1\cdot FATHER+b_2\cdot MOMONLY+b_3\cdot FF+e'$

- the estimated slope b_3 for family functioning FF was 16.4 and was significant (p<0.01)
 - mean child adaptation got worse (larger values or more behavioral problems) with poorer family functioning (larger values)
- this relationship was not significantly shifted for fathers (p=0.08) or for mothers without participating fathers (p=0.57)
- estimated standard deviations were close (27.8 for mothers and 27.2 for fathers)
- estimated IFC was substantial at 0.63 (p<0.01)

Father Effect

- perhaps the very nonsignificant MOMONLY effect (p=0.57) masked a significant FATHER effect
- the p-value for the test of zero slope for FATHER changed from nonsignificant (p=0.08) to significant (p=0.04) with the removal of MOMONLY
 - inclusion of MOMONLY did mask significant effect to FATHER
 - estimate of b₁ was > 0, so fathers considered child adaptation to be worse (more behavioral problems) than mothers
- in general, effects to family variables need to be considered in analyses since the mean outcome might change with those family variables
- but, in general, there is also a need to investigate reduced models in order to identify significant effects
- also need to consider alternative covariance structures
- so model selection criteria are needed

Penalized Likelihood Criteria (PLCs)

- for model selection
- likelihood adjusted by a penalty factor
 - likelihood changes with the distribution for data
 - likelihood is based on the multivariate normal density for linear mixed models
- formulated so that smaller scores indicate better models
- Akaike Information Criterion (AIC) has penalty factor based on the number of model parameters
- Schwarz's Bayesian Information Criterion (BIC) has penalty factor based on the number of observations and the number of model parameters
- AIC and BIC do not always agree on which is the better model

Evaluation of Variances

- AIC/BIC agree that, for the child adaptation data, homogeneous variances are preferable to heterogeneous variances
- and conclusions about fixed effects are the same
 - effects to FATHER and FF (family functioning) were significant under both variance alternatives
- not always the case and so it is important to consider alternatives for variances
 - and for correlations when appropriate

Summary of Adaptation Analyses

- as expected from the literature poorer family functioning corresponded with worse adaptation of a child to a chronic condition
- this relationship was the same for mothers with and without participating fathers
 - based on MOMONLY
- but was shifted up for fathers compared to mothers
 - but only after removing the nonsignificant MOMONLY effect
- variances did not differ much with family member
 - and were reasonably treated as homogeneous
 - but in general this will not be the case
- the IFC was substantial
 - it was important to account for this correlation
 - treating it as zero would have been very inappropriate

Impact of IFC

- when IFC is treated as equal to 0
- by modeling the data using a standard regression model in FATHER and FF
- the slope for FATHER is no longer significant (p=0.10)
- ignoring the correlation/covariance in family data can have an impact on the conclusions
 - usually results in a loss of power for identifying significant fixed effects

Other Family Effects

 if single mothers are also included in the study, can use the following

Y=a+b₁·FATHER+b₂·MOMONLY+b₃·FF+b₄·SNGLMOM+e'

- where SNGLMOM is 1 if a single mother and 0 otherwise
- single fathers and families with only participating fathers can be handled similarly

Family Data Mediation/Moderation

- can be addressed with regression models for means as for non-family data
- but need to use mixed modeling to account for IFC and possibly heterogeneous variance
- also need to adjust means for effects to type of family member and type of family
 - but may need to remove some of these if very nonsignificant since they may mask the mediation/moderation effects

Family Instrument Development Data

- cross-sectional study of parents of a child with a chronic condition to develop a survey instrument for measuring aspects of family management of the chronic condition
- 65 items were developed based on the Family Management Style Framework
- 579 parents from 417 families were surveyed including
 - 414 mothers with 349 (84.3%) partnered and 65 (15.7%) single
 - 165 fathers with mothers participating for all but 3 fathers
- only about 1% of the item values were missing, so these were imputed

Factor Analysis

- factor analysis models assume independence for item responses for different subjects
 - and so should not be applied to combined item responses for mothers and fathers from the same families
- 8 of the 65 items addressed parental mutuality which only applies to partnered parents
 - so single mothers responded to only 57 of the items
 - standard factor analysis procedures drop such partial sets of item responses
 - imputation of parental mutuality items not sensible for single mothers
- so we factor analyzed only the item responses for the 349 partnered mothers
 - since we considered mothers the primary family member

Family Management Measure (FaMM)

- 6 scales were produced based on 53 of the 65 items
 - child's daily life
 - condition management ability
 - condition management effort
 - family life difficulty
 - parental mutuality (only for partnered parents)
 - view of condition impact
- special methods were used to generate the scales that also allowed us to justify that those scales were appropriate for use by fathers and by single mothers
- internal consistency reliability, test-retest reliability, and construct validity were based on data for all parents using specialized linear mixed models accounting for IFC and differences for family members and for types of families

• Knafl et al. (2012)

Family Functioning Data

- from a cross-sectional study of parents of a child with a genetic condition
 - including PKU, CF, neurofibromatosis, sickle cell disease, thalassemia, hemophilia, and Marfan's syndrome
- two available measures of family functioning
 - $-Y_1$ = satisfaction (Family APGAR)
 - larger values mean more satisfied with family life
 - $-Y_2$ = hardiness (Family Hardiness Index)
 - larger values mean higher levels of hardiness (strength and durability)
- 52 two-parent families with both parents participating

Family Functioning Clusters

- wanted to classify family functioning for these 52 families
 - using both Y_1 = satisfaction and Y_2 = hardiness for both mothers and fathers
- not appropriate to cluster the 2.52=104 vectors (Y_1,Y_2) for mothers and fathers combined
 - clustering methods allow for correlation within a vector for the same subject, but treat vectors as independent across subjects
- can cluster the 52 vectors (Y_{1,mother}, Y_{2,mother}) for mothers separately from the 52 vectors (Y_{1,father}, Y_{2,father}) for fathers
 - but this will not take into account similarities and differences for mothers and fathers of the same families
- so we clustered the 52 combined vectors for both parents
 - i.e., (Y_{1,mother}, Y_{2,mother}, Y_{1,father}, Y_{2,father})

Generated Clusters

- Ward's method generated 5 family functioning types
 - well-adapted families (21 or 40.4%) with both parents tending to rate both satisfaction and hardiness as high
 - discrepant families (10 or 19.2%) with mothers tending to rate satisfaction and hardiness as high but with fathers tending to rate them both as moderate
 - diminished families with both parents tending to rate satisfaction and/or hardiness as moderate
 - with mothers diminished more in satisfaction (8 or 15.4%)
 - or with mothers diminished more in hardiness (11 or 21.2%)
 - compromised families (2 or 3.8%) with both parents tending to rate satisfaction and hardiness as low

Validity of the Clusters

- validated the clusters using
 - parental quality of life (QOL) (Quality of Life Index)
 - child functional status (Functional Status II)
 - reduced clusters to 3 so no sparse clusters
 - by combining the diminished and compromised clusters into a single diminished/compromised cluster
- considered ANOVA models for these variables
 - with main effects to type of parent and to cluster as well as an interaction effect to type of parent and cluster
 - expected means to change with clusters
 - using linear mixed models with errors correlated within families and independent across different families

Cluster Validity Results

- mean QOL changed significantly with cluster (p<0.01) and with the interaction (p=0.01) but not with type of parent (p=0.06)
 - a post hoc analysis revealed that (joint p<0.05)
 - mean QOL was lower for diminished/compromised parents than for well-adapted parents
 - with the difference being greater for diminished/compromised mothers than for diminished/compromised fathers
 - and was lower for fathers than mother of discrepant families

Cluster Validity Results

- mean child functional status changed significantly with cluster (p=0.01) but not with type of parent (p=0.37) or with the interaction (p=0.47)
 - a post hoc analysis revealed that (joint p<0.05)
 - child functional status was lower for diminished/compromised families than for the well-adapted and the discrepant families
- results for QOL and child functional status supported the validity of the clusters

Issues in Clustering Family Data

- these analyses used data from families for which there were two participating parents
 - data from families with only mothers participating were not used in the analyses
 - since hierarchical clustering procedures (e.g., SAS PROC CLUSTER) supporting Ward's method drop partial vectors
- possible to include families with partial vectors
 - k-means clustering
 - automatically adjusts the computation of distances between vectors of different sizes

Summary of Parts I-II

- have provided an overview of family data and the kinds of analyses they require
- have also provided examples of actual analyses of selected family data
- methods are available for analyzing the combined data for family members that account for IFC in most situations
 - factor analysis was the exception
- in many situations, these analyses require only fairly straightforward linear mixed models
 - but some cases require more sophisticated techniques and the assistance of a statistician
- however, it is important to address IFC in analyses of family data

Selected References

- Campbell, L., & Kashy. D. A. (2002). Estimating actor, partner, and interaction effects for dyadic data using PROC MIXED and HLM: A user-friendly guide. *Personal Relationships*, *9*, 327-342.
- Chang, A.-L., & Kelly, P. J. (2011). Application of a hierarchical model incorporating intrafamilial correlation and cluster effects. *Nursing Research*, 60, 208-212.
- Clarke, S. P. (1995). Characteristics of families-Implications for statistical analysis in family nursing research. *Canadian Journal of Nursing Research*, *27*, 47-55.
- Cook, W. L., & Kenny, D. A. (2005). The Actor-Partner Interdependence Model: A model of bidirectional effects in developmental studies. *International Journal of Behavioral Development*, 29, 101-109.
- Feetham, S. L. (1991). Conceptual and methodological issues in research of families. In: Whall, A.L., Fawcett, J., eds. *Family theory development in nursing: State of the science and art*. Philadelphia: F.A. Davis, pp. 55-68.
- Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). *Dyadic data analysis*. New York: The Guilford Press.
- Kim, S.-S., Reed, P. G., Hayward, R. D., Kang, Y., & Koenig, H. G. (2011). Spirituality and psychological well-being: Testing a theory of family interdependence among family caregivers and their elders. *Research in Nursing and Health*, 34, 103-115.
- Knafl, G. J. (2011). Quantitative methods and data analysis in family health research. In M. Craft-Rosenberg & S.-R. Pehler (Eds.), *Encyclopedia of Family Health* (pp. 966-970). Los Angelos, CA: Sage Publications.
- Knafl, G. J., Beeber, L., & Schwartz, T. A. (2012). A strategy for selecting among alternative models for continuous longitudinal data. *Research in Nursing & Health*, 35, 647-658.

Selected References

- Knafl, G. J., Dixon, J. K., O'Malley, J. P., Grey, M., Deatrick, J. A., Gallo, A., & Knafl, K. A. (2009). Analysis of cross-sectional univariate measurements for family dyads using linear mixed models. *Journal of Family Nursing*, 15, 130-151. DOI: 10.1177/1074840709331641.
- Knafl, G. J., Knafl, K. A., & McCorkle, R. (2005). Mixed models incorporating intra-familial correlation through spatial autoregressive methods. *Research in Nursing and Health*, 28, 348-356.
- Knafl, K., Deatrick, J. A., Gallo, A., Dixon, J. D., Grey, M., Knafl, G. J., & O'Malley, J. P. (2011). Assessment of the psychometric properties of the Family Management Measure. *Journal of Pediatric Psychology*, 36, 494-505. DOI: 10.1093/jpepsy/jsp034.
- Knafl, K. A., Deatrick, J. A., Knafl, G. J., Gallo, A., Dixon, J., & Grey, M. (2013). Patterns of family management of childhood chronic conditions and their relationship to child and family functioning. Journal of Pediatric Nursing, 38, 523-535.
- Knafl, K., Knafl, G, Gallo, A., & Angst, D. (2007). Parents' perceptions of functioning in families having a child with a genetic condition. *Journal of Genetic Counseling*, 16, 481-492.
- Lyons, K. S., & Sayer, A. G. (2005). Longitudinal dyad models in family research. Journal of Marriage and Family, 67, 1048-1060.
- Rayens, M. K., & Svavarsdottir, E. K. (2003). A new methodological approach in nursing research: An actor, partner, and interaction effect model for family outcomes. *Research in Nursing and Health*, 26, 409-419.
- Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth curves. *Journal of Educational and Behavioral Statistics*, *24*, 323-355.

Selected References

- Thomson, E., & R. Williams (1982). Beyond wives' family sociology: A method for analyzing couple data. Journal of Marriage and the Family, 44, 889-900.
- Uphold, C. R., & Strickland, O. L. (1989). Issues related to the unit of analysis in family nursing research. Western Journal of Nursing, 11, 405-417.